
Topic 8
Exception
Handling

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

3

§ Explain what is an exception

§ Explain how Java supports exception

handling

§ Describe a simple use of try, throw and

catch

§ Know the syntax for throwing exceptions

§ Be able to recognize common built-in

exception classes

§ Explain the process of catching exceptions

when multiple catch blocks are present

Objectives

4

§ Be able to create your own exception classes

§ Know how and when to declare exceptions,
and be able to trace the flow of control after an

exception has been thrown in such a program

§ Reading

Savitch: Chapter 9

Objectives

5

§ When a Java program violates the semantic

constraints of the Java language, the JVM

(Java Virtual Machine) signals this error to

the program as an exception

§ This is also referred to as an unusual

situation which the programmer may not

want to be handled by the usual code

Java Exceptions

6

§ Eg:

§ dividing by zero

§ index position in String is out of bounds

§ a name is too long for the spacing allocated for it

on the screen

§ Note that exceptions may arise in built-in

Java, in library classes, or in your own code

Java Exceptions

7

§ Exceptions are thrown by a program, and

may be caught and handled by another

part of the (same) program

§ A program can therefore be separated into a

normal execution flow and an
exception execution flow

Java Exceptions

8

§ Throwing an exception: either Java

itself or your code signals when something

unusual happens – involves creating the

exception object

§ Handling an exception: responding to

an exception by executing a part of the

program specifically written for the exception

§ Also called catching an exception

Exception Terminology

9

§ The normal case is handled in a try block

– the code where something could possibly

go wrong

§ The exceptional case is handled in a
catch block

§ The catch block takes a parameter of type

Exception

§ It is called the catch-block parameter

§ e is a commonly used name for it

Exception Terminology

10

§ If an exception is thrown execution in the

try block ends and control passes to the

catch block(s) after the try block

Exception Terminology

11

§ Exception handling is the code to deal with

the special cases (without the program

crashing)

§ Usually, this is an afterthought by

programmers but in many programming

languages it may involve making big

changes to the usual code

§ A program can deal with an exception in one

of three ways:

§ Ignore it

§ Handle it where it occurs

§ Handle it at another place within the program

Exception Handling

12

§ In many programming languages you use

the normal features of the language

§ Eg: add if-then statements etc., inside the usual

code to deal with the exceptions

§ You can do that in Java too

§ But in Java there are also special

constructs designed so that you can add on

the exception handling separately from the

usual code

§ Look at these three versions of an example

from Savitch …

Exception Handling

13

Example: DodgyStodgy

// DodgyStodgy.java: Code capable of crashing

import java.util.Scanner;

public class DodgyStodgy {

public static void main(String[] args) {

int donutCount, milkCount;

double donutsPerGlass;

Scanner keyboard = new Scanner(System.in);

System.out.println("Number of donuts?:");

donutCount = keyboard.nextInt();

System.out.println("Glasses of milk?:");

milkCount = keyboard.nextInt();

14

Example: DodgyStodgy

donutsPerGlass =

donutCount/(double)milkCount;

System.out.println(donutCount+" donuts.");

System.out.println(milkCount+" glasses.");

System.out.println("You have " +

donutsPerGlass + " donuts

for each glass of milk.");

} // end main

} // end class DodgyStodgy

15

Example: DodgyStodgy

/* Sample Output 1

Enter number of donuts:

12

Enter glasses of milk:

4

12 donuts.

4 glasses.

You have 3.0 donuts for each glass.

*/

16

Example: DodgyStodgy

/* Sample Output 2

Enter number of donuts:

6

Enter glasses of milk:

0

6 donuts.

0 glasses.

You have Infinity donuts for each glass.

*/

17

Example: GotMilk

/** GotMilk.java: A better version of DodgyStodgy

with a programmer’s own exception handling

routine added in the middle. */

import java.util.Scanner;

public class GotMilk {

public static void main(String[] args) {

int donutCount, milkCount;

double donutsPerGlass;

Scanner keyboard = new Scanner(System.in);

System.out.println("Number of donuts?:");

donutCount = keyboard.nextInt();

18

Example: GotMilk

System.out.println("Glasses of milk?:");

milkCount = keyboard.nextInt();

if (milkCount < 1) {

System.out.println("No Milk!");

System.out.println("Go buy some milk.");

} else {

donutsPerGlass =

donutCount/(double)milkCount;

System.out.println(donutCount + "

donuts.");

19

Example: GotMilk

System.out.println(milkCount + "

glasses.");

System.out.println("You have " +

donutsPerGlass +" donuts

for each glass of milk.");

}

System.out.println("End of program.");

} // end main

} // end class GotMilk

20

Example: GotMilk

/* Sample Output

Enter number of donuts:

6

Enter glasses of milk:

0

No Milk!

Go buy some milk.

End of program.

*/

21

Example: Exceptions

/** ExceptionDemo.java: An even better version of

DodgyStodgy - making use of Java’s built-in

exception handling. */

import java.util.Scanner;

public class ExceptionDemo {

public static void main(String[] args) {

int donutCount, milkCount;

double donutsPerGlass;

Scanner keyboard = new Scanner(System.in);

try{ //start of try block

System.out.println("Number donuts?:");

donutCount = keyboard.nextInt();

22

Example: Exceptions

System.out.println("Glasses of milk?:");

milkCount = keyboard.nextInt();

if (milkCount < 1)

throw new Exception("Exception: No

Milk!");

donutsPerGlass =

donutCount/(double)milkCount;

System.out.println(donutCount + "

donuts.");

System.out.println(milkCount + "

glasses.");

23

Example: Exceptions

System.out.println("You have " +

donutsPerGlass + " donuts

for each glass of milk.");

} //end of try block

catch(Exception e){ //start catch block

System.out.println(e.getMessage());

System.out.println(”Go buy some milk!");

} //end of catch block

System.out.println("End of program.");

} // end main

} // end class ExceptionDemo

24

Example: Exceptions

/* Sample Output

Enter number of donuts:

6

Enter glasses of milk:

0

Exception: No Milk!

Go buy some milk.

End of program.

*/

25

The try Statement

§ To process an exception when it occurs, the
line that throws the exception is executed

within a try block

§ Your code may throw different types of

exceptions which you may want to treat

differently

26

The try Statement

§ A try block is followed by one or more

catch blocks (clauses), which contain code

to process an exception

§ Each catch block has an associated

exception type

§ When an exception occurs, processing

continues at the first catch block that

matches the exception type

27

Throwing an Exception

§ Put the normal code (for unexceptional
cases) inside a try block

§ Inside the try block, an exception can be

thrown either

§ By some Java construct, or

§ Within some method (yours, in a library class or

someone else’s) which is invoked from within the
try block, or

§ By the code explicitly throwing an exception by:
throw new Exception(“optional

message”);

28

Throwing an Exception

§ If an exception is thrown, the following

actions are taken:

§ A new exception object is created which just

contains the optional message (if there is one)

§ The interpreter (JVM) leaves the try block

immediately and goes in search of a catch block

immediately after the try block

§ If a matching catch block exists (see later) then

the code inside the catch block is executed

§ After that, execution continues after the end of

the catch block(s)

29

Throwing an Exception

§ If there is no exception thrown in the try

block then the catch block is just skipped

30Built-in/Library Exception

Classes
§ The predefined class Exception (to which

all exception objects belong) is the top of a

complicated hierarchy of classes which

contain built-in exceptions, library class

exceptions and many programmer-defined

exceptions

§ Eg:
§ IOException

§ ClassNotFoundException

§ FileNotFoundException

§ IndexOutOfBoundsException

§ NumberFormatException

31Built-in/Library Exception

Classes
§ In documentation you will see such

exceptions as being possibly thrown by

methods

§ Eg:
public char charAt(int index)

Parameters: ...

Returns: ...

Throws:

IndexOutOfBoundsException - if the

index argument is negative or not

less than the length of this string

32

Catching Exceptions

§ Your program may throw different types of

exceptions which you may want to treat

differently

§ Then use multiple catch blocks ...

try {

// normal code including code which may

// throw exceptions

}

33

Catching Exceptions

catch(IOException e) {

// code to deal with an IOException probably

// including the following:

System.out.println(e.getMessage);

}

catch(IndexOutOfBoundsException e) {

// code to deal with this exception as above

}

34

Catching Exceptions

catch(Exception e) {

// deal with all other exceptions

System.out.println(e.getMessage();

System.out.println(“Program ” +

“aborted”);

System.exit(0);

}

// rest of the method code

// ...

35

Catching Exceptions

§ If an exception is thrown then it will be

caught by the first matching catch block (if

there is one following on from the try block)

§ Note that any exception will match the last

catch block above

§ The string returned by the method call
e.getMessage() ought to provide enough

information to identify the source of
exception

36Example: Method to read an
int

// assumes java.util.Scanner is imported

public static int readLineInt() {

Scanner keyboard = new Scanner(System.in);

String inputString = null;

int number = -9999; // Keep compiler happy

boolean done = false;

while (! done) {

try {

inputString = keyboard.nextLine();

inputString = inputString.trim();

number = Integer.parseInt(inputString);

37Example: Method to read an
int

done = true;

} // end try block

catch (NumberFormatException e) {

System.out.println("Error: incorrect input.");

System.out.println("Input number must be a ");

System.out.println("whole number written ");

System.out.println("as an ordinary numeral,");

System.out.println(" such as 21.");

System.out.println("Minus signs are OK, " +

"but do not use a plus sign.");

38Example: Method to read an
int

System.out.println("Please try again.");

System.out.println("Enter a whole number:");

} // end catch block

} // end while

return number;

} // end method

§ In the Try block:

1. inputString = keyboard.nextLine();

2. inputString = inputString.trim();

3. number = Integer.parseInt(inputString);

4. exception is thrown

§ catch (NumberFormatException e) block will be
executed

§ After the above catch block has been executed,

it will NOT return to the the try block and
continue (done = true;), but continue to

execute the code after, i.e. entering the next
round of while loop

Sequence of execution after the exception

has been thrown for the last example

40

Defining Your Own Exception

Classes

§ If you have your own type of exception

which you want to be handled separately

then define your own

§ Eg: in its own file create a class such as

41

Defining Your Own Exception

Classes

//DivideByZeroException.java

public class DivideByZeroException extends

Exception {

//default constructor

public DivideByZeroException() {

super("Dividing by Zero!");

// via Exception constructor

}

//constructor with message

public DivideByZeroException(String message) {

super(message);

}

} // end class DivideByZeroException

42

§ You can now throw and catch

DivideByZeroExceptions as shown in the

following DoDivision class:

Defining Your Own Exception

Classes

43

import java.util.Scanner;

public class DoDivision {

private int numerator, denominator;

private double quotient;

public static void main(String[] args) {

DoDivision doIt = new DoDivision();

try

{

doIt.doNormalCase();

}

Defining Your Own Exception

Classes

44

catch(DivideByZeroException e)

{

System.out.println(e.getMessage());

doIt.giveSecondChance();

}

System.out.println("End of Program.");

} // end main

Defining Your Own Exception

Classes

45

public void doNormalCase() throws

DivideByZeroException {

Scanner keyboard = new Scanner(System.in);

System.out.println("Enter numerator:");

numerator = keyboard.nextInt();

System.out.println("Enter denominator:");

denominator = keyboard.nextInt();

if (denominator == 0)

throw new DivideByZeroException();

quotient = numerator/(double)denominator;

System.out.println(numerator + "/" +

denominator + " = " + quotient);

}// end doNormalCase

Defining Your Own Exception

Classes

46

public void giveSecondChance() {

System.out.println("Try Again:");

Scanner keyboard = new Scanner(System.in);

System.out.println("Enter numerator:");

numerator = keyboard.nextInt();

System.out.println("Enter denominator:");

System.out.println("Be sure the denominator

is not zero.");

denominator = keyboard.nextInt();

Defining Your Own Exception

Classes

47

if (denominator == 0) {

System.out.println("Can’t divide by 0.");

System.out.println("Since what you want

cannot be done, ");

System.out.println("program will end.");

System.exit(0);

} // end if

quotient = ((double)numerator)/denominator;

System.out.println(numerator + "/"

+ denominator + " = " + quotient);

}

}// end class DoDivision

Defining Your Own Exception

Classes

48

Declaring Exceptions

§ Sometimes it is useful not to catch

exceptions within the method which threw

them, but to pass the problem back to the

method which called that method, or the

method which called that method, etc.

§ In that case, declare that a method throws

an exception and don’t bother handling the

exception within the method

49

Declaring Exceptions

§ Eg:

public double evaluate(double n1, double n2) throws

DivideByZeroException, UnknownOpException

{

//body of method which may throw

//exceptions

}

50

Declaring Exceptions

§ The method which invokes evaluate must

catch these exceptions or declare that it

throws them itself, etc.

§ If the main method fails to catch exceptions

then the program may crash

§ Note: some common errors do not need to
be declared (RuntimeExceptions).

51

Example: Calculator

// Calculator.java (from Savitch)

/** Simple line-oriented calculator program. Class

can also be used to create other calculator

programs. */

import java.util.Scanner;

public class Calculator {

private double result;

private double precision = 0.0001;

// Numbers this close to zero are treated as if

// they are equal to zero.

public static void main(String[] args) {

Calculator clerk = new Calculator();

52

Example: Calculator

try {

System.out.println("Calculator is on.");

System.out.print("Format of each line: "

+ "operator number");

System.out.println("For example: + 3");

System.out.println("Enter ‘e’ to end.");

clerk.doCalculation();

} // end try block

53

Example: Calculator

catch(UnknownOpException e) {

clerk.handleUnknownOpException(e);

}

catch(DivideByZeroException e) {

clerk.handleDivideByZeroException(e);

}

System.out.println("The final result is: "

+ clerk.resultValue());

System.out.println("Calculator ending.");

} // end main

54

Example: Calculator

public Calculator() { // constructor

result = 0;

}

public void reset() {

result = 0;

}

public void setResult(double newResult) {

result = newResult;

}

public double resultValue() {

return result;

}

55

Example: Calculator

/** The heart of a calculator. Does not give

instructions. Input errors throw exceptions. */

public void doCalculation() throws

DivideByZeroException, UnknownOpException {

char nextOp;

double nextNumber;

Scanner keyboard = new Scanner(System.in);

boolean done = false;

result = 0;

System.out.println("result = " + result);

56

Example: Calculator

while (! done) {

nextOp = keyboard.next().trim().charAt(0);

if ((nextOp == 'e') || (nextOp == 'E'))

done = true;

else {

nextNumber = keyboard.nextDouble();

result = evaluate(nextOp, result,

nextNumber);

System.out.println("result " + nextOp

+" "+ nextNumber +" = "+ result);

System.out.println("updated = " +result);

} // end if

} // end while

} // end doCalculation method

57

Example: Calculator

/** Returns n1 op n2, provided op is one of '+',

'–', '*',or '/'. Any other value of op throws

UnknownOpException. */

public double evaluate(char op, double n1,

double n2) throws DivideByZeroException,

UnknownOpException {

double answer;

switch (op) {

case '+':

answer = n1 + n2;

break;

58

Example: Calculator

case '-':

answer = n1 - n2;

break;

case '*':

answer = n1 * n2;

break;

case '/':

if ((-precision<n2)&&(n2<precision))

throw new DivideByZeroException();

answer = n1 / n2;

break;

59

Example: Calculator

default:

throw new UnknownOpException(op);

} // end switch

return answer;

} // end evaluate method

60

Example: Calculator

public void handleDivideByZeroException(

DivideByZeroException e) {

System.out.println("Dividing by zero.");

System.out.println("Program aborted.");

System.exit(0);

}

61

Example: Calculator

public void handleUnknownOpException(

UnknownOpException e) {

System.out.println(e.getMessage());

System.out.println("Try again from the

beginning:");

try {

System.out.println("Format of each line: "

+ "operator number");

System.out.println("For example: +3");

System.out.println("To end, enter the

letter e.");

doCalculation();

} // end try block

62

Example: Calculator

catch(UnknownOpException e2) {

System.out.println(e2.getMessage());

System.out.println("Try again at some

other time.");

System.out.println("Program ending.");

System.exit(0);

}

catch(DivideByZeroException e3) {

handleDivideByZeroException(e3);

}

} // end handleUnknownOpException method

} // end class Calculator

63

Example: Calculator

/* Sample test run …

Calculator is on.

Format of each line: operator number

For example: + 3

To end, enter the letter e.

result = 0.0

+ 10

result + 10.0 = 10.0

updated result = 10.0

64

Example: Calculator

/* Sample test run …

result - 3.0 = 7.0

updated result = 7.0

* 4

result * 4.0 = 28.0

updated result = 28.0

/ 2

result / 2.0 = 14.0

updated result = 14.0

/ 0

Dividing by zero.

Program aborted. */

65

Example: Calculator

// UnknownOpException.java: for use with

Calculator.java

public class UnknownOpException extends

Exception {

public UnknownOpException() {

super("UnknownOpException");

}

public UnknownOpException(char op) {

super(op + " is an unknown operator.");

}

public UnknownOpException(String message) {

super(message);

}

} // end class UnknownOpException

End of Topic 8

